As shown in the figure, the board with length L = 1.6m and mass m = 3kg is placed on a smooth horizontal plane, the small block with mass m = 1kg is placed on the right end of the board, and the dynamic friction coefficient between the board and the block μ = 0.1. Now, apply a horizontal right tension f to the board, take g = 10m / S2, and find: (1) the maximum tension f to keep the block from falling; (2) if the tension f = 10N is constant, the maximum friction coefficient of the small block can be obtained Maximum speed

As shown in the figure, the board with length L = 1.6m and mass m = 3kg is placed on a smooth horizontal plane, the small block with mass m = 1kg is placed on the right end of the board, and the dynamic friction coefficient between the board and the block μ = 0.1. Now, apply a horizontal right tension f to the board, take g = 10m / S2, and find: (1) the maximum tension f to keep the block from falling; (2) if the tension f = 10N is constant, the maximum friction coefficient of the small block can be obtained Maximum speed

(1) The critical condition for the existence of the maximum pulling force is that the block and the board share the same maximum acceleration, A1 = μ MGM = μ g = 1 & nbsp; m / S2 for the block, f = (M + m) A1 = (3 + 1) × 1 & nbsp; n = 4 & nbsp; n (2) when f = 10 & nbsp; N, the