For any differentiable function f (x) on R, if (x-1) f ′ (x) ≥ 0, then () A. f(0)+f(2)<2f(1)B. f(0)+f(2)≤2f(1)C. f(0)+f(2)≥2f(1)D. f(0)+f(2)>2f(1)

For any differentiable function f (x) on R, if (x-1) f ′ (x) ≥ 0, then () A. f(0)+f(2)<2f(1)B. f(0)+f(2)≤2f(1)C. f(0)+f(2)≥2f(1)D. f(0)+f(2)>2f(1)

According to the meaning of the problem, when x ≥ 1, f '(x) ≥ 0, the function f (x) is an increasing function on (1, + ∞); when x < 1, f' (x) ≤ 0, f (x) is a decreasing function on (- ∞, 1), so when x = 1, the minimum value of F (x) is also the minimum value, that is, f (0) ≥ f (1), f (2) ≥ f (1), f (0) + F (2) ≥ 2F (1)