In the complex plane, the point corresponding to the conjugate complex of complex z = - 1-I lies at A. First quadrant B, second quadrant C, third quadrant D, fourth quadrant

In the complex plane, the point corresponding to the conjugate complex of complex z = - 1-I lies at A. First quadrant B, second quadrant C, third quadrant D, fourth quadrant


The conjugate complex of Z = - 1-I is - 1 + I, corresponding to (- 1,1). In the second quadrant, choose B



Change - 4 + 3I into triangle form


Original formula = 5 (- 4 / 5 + 3I / 5)
=5[cos(π-arctan3/4)+isin(π-arctan3/4)]



Change the following complex numbers into triangular form 1.3i 2. - 2 3. - 1 + radical 3I 4.1/2 - radical 3I / 2


3i=3*(cos270+isin270)
-2=2*(cos180+isin180)
-1 + radical 3I = 2 * (cos120 + isin120)
1 / 2-radical 3I / 2 = cos300 + isin300
Just calculate the angle and the mode



Change the complex algebra formula of negative 1 / 2 minus negative 2 / 2 root 3I into triangular form. Please explain how to get the angle equal to 4 / 3 π?
It should be in the third quadrant. I want to know how the angle gets 4 / 3 PI~


If "negative 1 / 2 minus negative 2 / 2 root 3I"
I.e. - 1 / 2 - (- √ 3 / 2) I
=-1/2+√3/2i
r=√[(-1/2)²+(√3/2)²]=1
cosθ=(-1/2)/1=-1/2
Because the point corresponding to - 1 / 2 + √ 3 / 2I (- 1 / 2, √ 3 / 2) is in the second quadrant
So Arg (- 1 / 2 + √ 3 / 2I) = 2 π / 3
So: - 1 / 2 - (- √ 3 / 2) I = - 1 / 2 + √ 3 / 2I = cos (2 π / 3) + isin (2 π / 3)
If "negative 1 / 2 minus 2 / 2 root 3I"
That is - 1 / 2 - √ 3 / 2I
r=√[(-1/2)²+(-√3/2)²]=1
cosθ=(-1/2)/1=-1/2
Because the point corresponding to - 1 / 2 + √ 3 / 2I (- 1 / 2, - 3 / 2) is in the third quadrant
So Arg (- 1 / 2 + √ 3 / 2I) = 4 π / 3
So: - 1 / 2 - √ 3 / 2I = cos (4 π / 3) + isin (4 π / 3)
Note: the landlord means the second one