1. The relationship between displacement and velocity is & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; 2. The average velocity formulas of uniform speed change linear motion are & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;, & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp 3. In the uniform velocity linear motion, the difference of displacement in continuous equal time t is & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp 4. The instantaneous velocity in the middle of a period of time is equal to & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;. The instantaneous velocity in the middle of a period of time is equal to & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;, and the relationship between them is & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; (assuming that the initial and final velocities are known to be) 5. If an object moves in a straight line with constant acceleration and initial velocity of zero, then at the end of 1t seconds, 2T seconds, 3T seconds The speed ratio is & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; the first 1t second, the first 2T second, the first 3T second Displacement ratio &Nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; the 1t second, 2T second, 3T second Displacement ratio; The ratio of time required for continuous and equal displacements

1. The relationship between displacement and velocity is & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; 2. The average velocity formulas of uniform speed change linear motion are & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;, & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp 3. In the uniform velocity linear motion, the difference of displacement in continuous equal time t is & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp 4. The instantaneous velocity in the middle of a period of time is equal to & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;. The instantaneous velocity in the middle of a period of time is equal to & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;, and the relationship between them is & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; (assuming that the initial and final velocities are known to be) 5. If an object moves in a straight line with constant acceleration and initial velocity of zero, then at the end of 1t seconds, 2T seconds, 3T seconds The speed ratio is & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; the first 1t second, the first 2T second, the first 3T second Displacement ratio &Nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; & nbsp; the 1t second, 2T second, 3T second Displacement ratio; The ratio of time required for continuous and equal displacements


1. The relationship between displacement and velocity is VT ^ 2 = V 0 ^ 2 + 2 ax. 2. The average velocity formula of uniform velocity is (v 1 + V 2) / 2, X / T.3



Explanation of physical displacement formula (write the explanation after the formula)
RT


S = v0t + 1 / 2at ^ 2 (V0 is initial velocity, a is acceleration, t is time used)
Vt ^ 2-v0 ^ 2 = 2As (VT is the final velocity, V0 is the initial velocity) note (in V0, "0" is the subscript, similarly, "t" in VT is the subscript, and "^ 2" is the square)



Displacement formula


If it's a uniform linear motion
x=V0t+1/2at²
X = (V0 + VT) * t / 2 (where t in VT is subscript)
x=v²/2a
If it's moving in a straight line at a constant speed
x=vt
If it is any other motion, the displacement can be calculated by connecting the initial state with the final state



How to deduce VT ^ 2 - V0 ^ 2 = 2As?


S = (V0 + VT) t / 2, then 2S / T = V0 + vt
Both sides multiply vt-v0 to get VT square + V0 square = 2S (vt-v0) / T = 2As



Add the same number to the numerator and denominator of 5 / 29 of the fraction. The ratio of numerator to denominator is 7:19. What's the number?


(5+x)/(29+x)=7/19
19*(5+x)=7*(29+x)
95+19x=203+7x
12x=108
x=9



The special solution of the differential equation y · = 1 / X (y + xlnx) satisfying the initial condition y | x = 0 = 0 is obtained


Y '= 1 / X (y + xlnx) y' = Y / x + LNX let u = Y / x, y = UX, y '= u'x + UU'x + U = u + lnxu' = LNX / Xu = ∫ LNX / X · DX = ∫ lnxd (LNX) = (LNX) ^ 2 / 2 + CY = UX = [(LNX) ^ 2 / 2 + C] x = x (LNX) ^ 2 / 2 + Cx. From the original equation and general solution, X can't take 0. Is the initial condition y | x = 1 = 0? If x = 1, y = 00 = 0 +



Observe the law of the following group of numbers: 0, 3, 8, 15, 24... What is the number 2009 and what is the number n


The number of 2009 is 2009 ^ 2-1, which is the square of 2009-1
The nth number is n ^ 2-1, which is the square of n-1



Skillful combination of numbers. Use the six numbers of 0, 1, 2, 3, 5 and 6 to form a three digit divided by two digit formula. Quotient is the division formula of one digit (no remainder). (each number can only be used once)


Use the six numbers of 0, 1, 2, 3, 5 and 6 to form a three digit division by two digits. The quotient is the division of one digit. The formula is: 130 △ 65 = 2



In the space rectangular coordinate system, a (- 3., 2, - 1), B (0,4, - 3), then | ab | =?


Because | ab | ^ 2 = (- 3-0) ^ 2 + (2-4) ^ 2 + [- 1 - (- 3)] ^ 2 = 17,
So | ab | = the arithmetic square root of 17



Let the equation of hyperbola C be x ^ 2 / 4-y ^ 2 = 1, and the equation of branch line l be y = KX + 1. In the following cases, we discuss the range of K, and the relationship between the line L and hyperbola C (1)


The two equations are combined,
x^2/4-y^2=1
y=kx+1
The results are as follows
(1-2k^2)x^2-4kx-6=0
i) When 2K ^ 2 = 1, that is, k = ± (radical 2) / 2, the original equation is reduced to - 4kx = 6, x = - 3 / 2K, and there is only one solution, that is, there is only one intersection point between hyperbola and straight line
II) when 2K ^ 2 ≠ 1, △ = 16K ^ 2 + 24 (1-2k ^ 2) = 24-32k ^ 2
If 24-32k ^ 2 = 0, that is, k = ± (radical 3) / 2, △ = 0, there is only one solution, that is, there is only one intersection point between hyperbola and straight line
If 24-32k ^ 2 > 0, that is - (radical 3) / 2