Limx → 0 {√ (x + 1) - 1} / sin2x

Limx → 0 {√ (x + 1) - 1} / sin2x


limx→0{√(x+1)-1}/sin2x=limx→0(x/sin2x)*1/({√(x+1)+1)=2/2=1



limx→0+ln(1+sin2x)/x
What is ln (1 + sin2x) / X equal to when x right approaches 0


It's type 0 / 0, using the lobita rule:
lim ln(1+sin2x)/x
x->0+
=lim 1/(1+sin2x)*cos2x*2 /1
x->0+
= 1/(1+0)*1*2/1=1/2



limx=√(x+1)- √(1+x²) x--0 —————————— √(1+x)- 1
Dizzy baidu this typesetting ah
Sorry to write it again
lim(x→0) =【√(x+1)- √(1+x²)】/【√(1+x)- 1】


I remind you, you don't ask
The original formula = Lim [(x + 1) - (1 + X & # 178;)] / [√ (1 + x) - 1] [√ (x + 1) + √ (1 + X & # 178;)]
=lim(x-x^2)/[√(1+x)- 1][√(x+1)+ √(1+x²)]
When X - > 0
Lim [√ (1 + x) - 1] = limx / 2 = 0 (that is, [√ (1 + x) - 1] and X / 2 are equivalent infinitesimals, which is the knowledge to be known)
The theorem of Equivalent Infinitesimal Substitution
The original formula = limx (1-x) / {X / 2 [√ (x + 1) + √ (1 + X & # 178;)]}
=lim2(1-x)/[√(x+1)+ √(1+x²)]
=lim2*lim(1-x)/[lim√(x+1)+lim√(1+x²)]
=2*1/(√1+√1)
=2/2
=1