已知函數f(x)=ax2-2x+lnx (Ⅰ)若f(x)無極值點,但其導函數f′(x)有零點,求a的值; (Ⅱ)若f(x)有兩個極值點,求a的取值範圍,並證明f(x)的極小值小於-3 2.

已知函數f(x)=ax2-2x+lnx (Ⅰ)若f(x)無極值點,但其導函數f′(x)有零點,求a的值; (Ⅱ)若f(x)有兩個極值點,求a的取值範圍,並證明f(x)的極小值小於-3 2.

解 (Ⅰ)首先,x>0f/(x)=2ax−2+1
x=2ax2−2x+1
x
f′(x)有零點而f(x)無極值點,表明該零點左右f′(x)同號,故a≠0,且2ax2-2x+1=0的△=0.由此可得a=1
2
(Ⅱ)由題意,2ax2-2x+1=0有兩不同的正根,故△>0,a>0.
解得:0<a<1
2
設2ax2-2x+1=0的兩根為x1,x2,不妨設x1<x2,
因為在區間(0,x1),(x2,+∞)上,f′(x)>0,
而在區間(x1,x2)上,f′(x)<0,故x2是f(x)的極小值點.
因f(x)在區間(x1,x2)上f(x)是减函數,如能證明f(x1+x2
2)<−3
2,則更有f(x2)<−3
2
由韋達定理,x1+x2
2=1
2a,f(1
2a)=a(1
2a)2−2(1
2a)+ln1
2a=ln1
2a−3
2•1
2a
令1
2a=t,其中設g(t)=lnt−3
2t+3
2,
利用導數容易證明g(t)當t>1時單調遞減,而g(1)=0,
∴g(t)=lnt-3
2 t+3
2<0,
囙此f(1
2a)<-3
2,
從而有f(x)的極小值f(x2)<-3
2.

求導數:y=[sin(x/2)+cos(x/2)]^2-1

y=(sinx/2)^2+2sinx/2cosx/2+(cosx/2)^2-1
=1+sinx-1=sinx,
y'=cosx.

y=sin a减Cos x求導 sina怎麼等於零

y=sina-cosx【這個函數中,x是引數,則:sina是常數,其導數為0】
則:
y'=(sina)'-(cosx)'
y'=0-(-sinx)
y'=cosx
y=sinx-cosx的話,則:y'=cosx+sinx

y=sin^4 x/4 + cos^4 x/4求導數…………

y=sin^4 x/4 + cos^4 x/4
y'=4sin^3(x/4)*cos(x/4)*(1/4)+4cos^3(x/4)*(-sinx/4)*(1/4)
=sin^3(x/4)cos(x/4)-cos^3(x/3)sin(x/4)
=sin(x/4)cos(x/4)[sin^2(x/4)-cos^2(x/4)]
=(sinx/2)/2 *(-cosx/2)
=(-sinx)/4
y=(sin^4 x/4 + cos^4 x/4)
=(sin^2(x/4)+cos^2(x/4))²-2sin^2(x/4)cos^2(x/4)
=1-2sin^2(x/4)cos^2(x/4)
=1-(1/2)(sinx/2)²
求導
y=-1/2 * 2(sinx/2)*cos(x/2)*(1/2)
=(-1/4)sinx

y=x-sin(x/2)cos(x/2)求導數請寫出具體過程,

y=x-1/2*sinx
所以y'=1-1/2*cosx

cos(x)+sin(y)=1是關於T的隱函數求導

cos(x)+sin(y)=1是關於T的隱函數求導
作函數F(x,y)=cosx+siny-1=0
則dy/dx=-(∂F/∂x)/(∂F/∂y)=(sinx)/(cosy)