已知各項都為正數等比數列的{an}中,a2*a4=4,a1+a2+a3=14則滿足an+an+1+an+2>1/9最大正整數n的值?

已知各項都為正數等比數列的{an}中,a2*a4=4,a1+a2+a3=14則滿足an+an+1+an+2>1/9最大正整數n的值?


∵a2*a4=4
∴a3=2.
q=1/2.
an=2^(4-n)
2^(9-3n)>1/9.
9-3n>=-3
n



已知各項都為正數等比數列的{an}中,a2+a4=4,a1+a2+a3=14則滿足an+an+1+an+2>1/9最大正整數n的值?


a1(q+q^3)=4
a1(1+q+q^2)=14
兩式相除:(q+q^3)/(1+q+q^2)=2/7
求得q
an+an+1+an+2=(a1+a2+a3)*q^(n-1)>1/9
關鍵是求q
說實在的,我沒求出q,不知是計算問題還是怎麼的.只能給你這種思路借鑒了·······



等比數列an中a4=2,a5=5,則(lgan)的前8項和等於


等比數列中a1*a8=a2*a7=a3*a6=a4*a5
lga1+lga2+…+lga8=lg(a1*a2*a3*…*a8)
=lg[(a1*a8)*(a2*a7)*…*(a4*a5)]
=lg(a4*a5)^4
=4lg(a4*a5)
=4×lg(2×5)
=4



設正數數列{an}為一等比數列,且a2=4,a4=16.求:limn→∞lgan+1+lgan+2+…+lga2nn.


設數列{an}的公比為q,顯然q≠1,a4a2=q2=4,由於an>0,n∈N,∴q=2,a1=a2q=2,∴an=a1qn-1=2n,囙此lgan+1+lgan+2+…+lga2nn=lg2n+1+lg2n+2+…+lg22nn2=[(n+1)+(n+2)+…+2n]n2lg2=3n2+n2n2•lg2,原式=limn→∞(3n2+n2n2•lg2) ;=lg2•limn→∞3n2+n2n2=32lg2.